论文标题

结构化域的适应性,无监督人员的在线关系正规化re-id

Structured Domain Adaptation with Online Relation Regularization for Unsupervised Person Re-ID

论文作者

Ge, Yixiao, Zhu, Feng, Chen, Dapeng, Zhao, Rui, Wang, Xiaogang, Li, Hongsheng

论文摘要

无监督的域改编(UDA)旨在将在标记的源域数据集中训练的模型调整为未标记的目标域数据集。 UDA在开放式人士重新识别(RE-ID)上的任务更具挑战性,因为两个域之间的身份(类)没有重叠。一个主要的研究方向是基于域翻译,但是,由于性能较低,与基于伪标签的方法相比,近年来由于性能较低而失利。我们认为,域翻译在利用有价值的源域数据方面具有巨大的潜力,但是现有方法在翻译过程中没有提供适当的正则化。具体而言,以前的方法仅着重于维护翻译图像的身份,同时忽略了翻译过程中样本间关系。为了应对挑战,我们提出了一个端到端结构化域的适应框架,并具有在线关系一致性正规化项。在培训期间,对人的功能编码器进行了优化,以模拟样本间关系,以在线示例中,以监督关系一致性域的翻译,这又可以通过信息丰富的翻译图像来改善编码器。可以使用伪标签进一步改进编码器,在该标签中,源至目标翻译的图像具有地面身份,并且具有伪身份的目标域图像被共同用于训练。在实验中,我们提出的框架被证明可以在重新ID的多个UDA任务上实现最先进的绩效。通过从结构化域翻译网络的合成到现实的翻译图像,我们在2020年在视觉域自适应挑战(VISDA)中获得了第二名。

Unsupervised domain adaptation (UDA) aims at adapting the model trained on a labeled source-domain dataset to an unlabeled target-domain dataset. The task of UDA on open-set person re-identification (re-ID) is even more challenging as the identities (classes) do not have overlap between the two domains. One major research direction was based on domain translation, which, however, has fallen out of favor in recent years due to inferior performance compared to pseudo-label-based methods. We argue that the domain translation has great potential on exploiting the valuable source-domain data but existing methods did not provide proper regularization on the translation process. Specifically, previous methods only focus on maintaining the identities of the translated images while ignoring the inter-sample relations during translation. To tackle the challenges, we propose an end-to-end structured domain adaptation framework with an online relation-consistency regularization term. During training, the person feature encoder is optimized to model inter-sample relations on-the-fly for supervising relation-consistency domain translation, which in turn, improves the encoder with informative translated images. The encoder can be further improved with pseudo labels, where the source-to-target translated images with ground-truth identities and target-domain images with pseudo identities are jointly used for training. In the experiments, our proposed framework is shown to achieve state-of-the-art performance on multiple UDA tasks of person re-ID. With the synthetic-to-real translated images from our structured domain-translation network, we achieved second place in the Visual Domain Adaptation Challenge (VisDA) in 2020.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源