论文标题

深度亲和力网络:实例分割通过亲和力

Deep Affinity Net: Instance Segmentation via Affinity

论文作者

Xu, Xingqian, Chiu, Mang Tik, Huang, Thomas S., Shi, Honghui

论文摘要

大多数现代实例分割方法都分为两类:基于区域的方法,其中首先检测到对象边界框,然后将其用于种植和细分实例;和基于按键的方法,其中单个实例由一组关键点表示,然后是围绕这些关键点的密集像素聚类。尽管这两个范式具有成熟度,但我们还是想报告一种基于亲和力的范式,其中根据密集的预测亲和力和图形分配算法对实例进行了细分。这种基于亲和力的方法表明,可以在实例分割任务中直接应用除区域或关键点以外的高级图形功能。在这项工作中,我们提出了深度亲和力网络,这是一种有效的基于亲和力的方法,并伴随着一种新的图形分区算法Cascade-gaec。如果没有铃铛和哨声,我们的端到端模型在CityScapes Val上占32.4%的AP,测试中的AP为27.5%。它实现了所有基于亲和力的模型中最佳的单杆结果以及最快的运行时间。它还优于基于区域的方法蒙版R-CNN。

Most of the modern instance segmentation approaches fall into two categories: region-based approaches in which object bounding boxes are detected first and later used in cropping and segmenting instances; and keypoint-based approaches in which individual instances are represented by a set of keypoints followed by a dense pixel clustering around those keypoints. Despite the maturity of these two paradigms, we would like to report an alternative affinity-based paradigm where instances are segmented based on densely predicted affinities and graph partitioning algorithms. Such affinity-based approaches indicate that high-level graph features other than regions or keypoints can be directly applied in the instance segmentation task. In this work, we propose Deep Affinity Net, an effective affinity-based approach accompanied with a new graph partitioning algorithm Cascade-GAEC. Without bells and whistles, our end-to-end model results in 32.4% AP on Cityscapes val and 27.5% AP on test. It achieves the best single-shot result as well as the fastest running time among all affinity-based models. It also outperforms the region-based method Mask R-CNN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源