论文标题

为协作任务推荐部署策略

Recommending Deployment Strategies for Collaborative Tasks

论文作者

Wei, Dong, Roy, Senjuti Basu, Amer-Yahia, Sihem

论文摘要

我们的工作有助于协助请求者在众包中部署协作任务。我们启动了针对与他们想要的部署参数相一致的请求者推荐的协作任务部署策略的研究:对人群贡献的质量较低,对任务完成的延迟的上限以及对薪水工人造成的成本的上限。部署策略是三个维度的价值选择:结构(是依次还是同时或同时征求劳动力),组织(组织合作或独立地组织)和样式(仅依靠人群或将其与机器算法相结合)。我们提出了StratRec,这是一种优化驱动的中层层,通过考虑工人的可用性,向请求者建议部署策略和替代部署参数。我们的解决方案基于离散优化和计算几何技术,这些技术具有理论保证的结果。我们介绍了亚马逊机械土耳其人的广泛实验,并进行合成实验,以验证StratRec的定性和可伸缩性方面。

Our work contributes to aiding requesters in deploying collaborative tasks in crowdsourcing. We initiate the study of recommending deployment strategies for collaborative tasks to requesters that are consistent with deployment parameters they desire: a lower-bound on the quality of the crowd contribution, an upper-bound on the latency of task completion, and an upper-bound on the cost incurred by paying workers. A deployment strategy is a choice of value for three dimensions: Structure (whether to solicit the workforce sequentially or simultaneously), Organization (to organize it collaboratively or independently), and Style (to rely solely on the crowd or to combine it with machine algorithms). We propose StratRec, an optimization-driven middle layer that recommends deployment strategies and alternative deployment parameters to requesters by accounting for worker availability. Our solutions are grounded in discrete optimization and computational geometry techniques that produce results with theoretical guarantees. We present extensive experiments on Amazon Mechanical Turk and conduct synthetic experiments to validate the qualitative and scalability aspects of StratRec.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源