论文标题

回忆学习蜂窝自动机:理论和应用

Memristive Learning Cellular Automata: Theory and Applications

论文作者

Karamani, Rafailia-Eleni, Fyrigos, Iosif-Angelos, Ntinas, Vasileios, Liolis, Orestis, Dimitrakopoulos, Giorgos, Altun, Mustafa, Adamatzky, Andrew, Stan, Mircea R., Sirakoulis, Georgios Ch.

论文摘要

Memristors are novel non volatile devices that manage to combine storing and processing capabilities in the same physical place.Their nanoscale dimensions and low power consumption enable the further design of various nanoelectronic processing circuits and corresponding computing architectures, like neuromorhpic, in memory, unconventional, etc.One of the possible ways to exploit the memristor's advantages is by combining them with Cellular自动机(CA).ca构成了一个众所周知的非von Neumann计算体系结构,基于局部互连形成N维网格的简单相同单元的互连。这些本地互连允许全球和复杂现象的出现。在本文中,我们提出了与Memristor实施的CA原始定义的杂种,并更加集中于Memristor的实现,并更加集中于我们,以及更加浓缩的实现,以及更多的范围,以及更多的自动化,以及更多的自动化,以及更多的自动化,以及更多的自动定义,以及更多的自动定义,并与本文相关联,并涉及本文的杂交,以及更多的定义,并与本文进行了杂交,并与本文相关。 (MLCA)具有学习能力,它还使用简单的相同互连单元格并利用了Memristor设备固有的可变性。所提出的MLCA电路水平实现应用于通过一系列的Spice模拟在图像处理中的最佳检测,证明了其稳健性和功效。

Memristors are novel non volatile devices that manage to combine storing and processing capabilities in the same physical place.Their nanoscale dimensions and low power consumption enable the further design of various nanoelectronic processing circuits and corresponding computing architectures, like neuromorhpic, in memory, unconventional, etc.One of the possible ways to exploit the memristor's advantages is by combining them with Cellular Automata (CA).CA constitute a well known non von Neumann computing architecture that is based on the local interconnection of simple identical cells forming N-dimensional grids.These local interconnections allow the emergence of global and complex phenomena.In this paper, we propose a hybridization of the CA original definition coupled with memristor based implementation, and, more specifically, we focus on Memristive Learning Cellular Automata (MLCA), which have the ability of learning using also simple identical interconnected cells and taking advantage of the memristor devices inherent variability.The proposed MLCA circuit level implementation is applied on optimal detection of edges in image processing through a series of SPICE simulations, proving its robustness and efficacy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源