论文标题

更健康的饮食:探索营养信息以提供更健康的食谱建议

Eating Healthier: Exploring Nutrition Information for Healthier Recipe Recommendation

论文作者

Chen, Meng, Jia, Xiaoyi, Gorbonos, Elizabeth, Hong, Chnh T., Yu, Xiaohui, Liu, Yang

论文摘要

随着个性化食谱共享网络的蓬勃发展(例如,美味),很容易获得来自不同美食的食谱。在本文中,我们旨在解决许多家庭烹饪在网上搜索食谱时遇到的问题。也就是说,找到最适合一组成分的食谱,同时遵循健康的饮食准则。这项任务尤其困难,因为在线食谱的狮子份额已被证明是不健康的。在本文中,我们提出了一个名为Nutrec的新型框架,该框架对食谱中的成分及其比例之间的相互作用进行了建模,以提供健康的建议。特定具体的是,NutRec由三个主要组成部分组成:1)使用基于嵌入的成分预测因子来预测具有用户定义的初始成分的相关成分,2)预测具有多层perceptron网络的相关成分的量伪蛋白食品。我们在两个食谱数据集上进行了实验,包括带有36,429种食谱的AllRecipes,分别提供89,413种食谱。经验结果支持该框架的直觉,并展示其检索更健康食谱的能力。

With the booming of personalized recipe sharing networks (e.g., Yummly), a deluge of recipes from different cuisines could be obtained easily. In this paper, we aim to solve a problem which many home-cooks encounter when searching for recipes online. Namely, finding recipes which best fit a handy set of ingredients while at the same time follow healthy eating guidelines. This task is especially difficult since the lions share of online recipes have been shown to be unhealthy. In this paper we propose a novel framework named NutRec, which models the interactions between ingredients and their proportions within recipes for the purpose of offering healthy recommendation. Specifically, NutRec consists of three main components: 1) using an embedding-based ingredient predictor to predict the relevant ingredients with user-defined initial ingredients, 2) predicting the amounts of the relevant ingredients with a multi-layer perceptron-based network, 3) creating a healthy pseudo-recipe with a list of ingredients and their amounts according to the nutritional information and recommending the top similar recipes with the pseudo-recipe. We conduct the experiments on two recipe datasets, including Allrecipes with 36,429 recipes and Yummly with 89,413 recipes, respectively. The empirical results support the framework's intuition and showcase its ability to retrieve healthier recipes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源