论文标题

多部分量子系统中没有纠缠的强量子非局部性

Strong Quantum Nonlocality without Entanglement in Multipartite Quantum Systems

论文作者

Yuan, Pei, Tian, Guojing, Sun, Xiaoming

论文摘要

在本文中,我们从两个方面概括了强量子非局部性的概念。首先,在$ \ mathbb {c}^d \ otimes \ mathbb {c}^d \ otimes \ otimes \ mathbb {c}^d $量子系统中,我们提供了一个强烈非局部量子状态的结构,其中包含$ 6(d-1)^2 $正元产品状态的$ 6(d-1)^2 $ of then of哪个阶段,比$ d $ d^3 $ d^33 33的构建。其次,我们在$ \ mathbb {c}^3 \ otimes \ Mathbb {c}^3 \ otime \ time \ Mathbb {C}^3 \ 3 \ 3 \ otimime \ mathbb {c}^3 $量子系统中,我们将提供明确的非局部正交产品基础的明确形式。到现在为止。这两个结果都积极回答[Halder,\ textit {等},prl,122,040403(2019)]中的开放问题,也就是说,确实存在,甚至较小数量的量子状态可以证明强大的量子非偏置性,而无需纠缠。

In this paper, we generalize the concept of strong quantum nonlocality from two aspects. Firstly in $\mathbb{C}^d\otimes\mathbb{C}^d\otimes\mathbb{C}^d$ quantum system, we present a construction of strongly nonlocal quantum states containing $6(d-1)^2$ orthogonal product states, which is one order of magnitude less than the number of basis states $d^3$. Secondly, we give the explicit form of strongly nonlocal orthogonal product basis in $\mathbb{C}^3\otimes \mathbb{C}^3\otimes \mathbb{C}^3\otimes \mathbb{C}^3$ quantum system, where four is the largest known number of subsystems in which there exists strong quantum nonlocality up to now. Both the two results positively answer the open problems in [Halder, \textit{et al.}, PRL, 122, 040403 (2019)], that is, there do exist and even smaller number of quantum states can demonstrate strong quantum nonlocality without entanglement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源