论文标题

转限平面的转换

Transformations of the transfinite plane

论文作者

Rinot, Assaf, Zhang, Jing

论文摘要

我们研究了跨菲斯平面的转换的存在,这些转化允许人们将无数阿贝尔群体纳入不可数用的红衣主教的经典分区关系。 举例说明:我们证明,对于每一个无法访问的基本$κ$,如果$κ$承认一个不反映在Inaccessibles上的固定套件,那么经典的负面分区关系$κ\ brightArrow [κ]^2_κ$表示,对于每个Abelian Group $(g,+)$κ$ g g b y here g g g b y here ex. $ x \ subseteq g $ size $κ$和g $中的每个$ g \ in $ x $中存在$ x \ neq y $,因此$ f(x+y)= g $。

We study the existence of transformations of the transfinite plane that allow one to reduce Ramsey-theoretic statements concerning uncountable Abelian groups into classical partition relations for uncountable cardinals. To exemplify: we prove that for every inaccessible cardinal $κ$, if $κ$ admits a stationary set that does not reflect at inaccessibles, then the classical negative partition relation $κ\nrightarrow[κ]^2_κ$ implies that for every Abelian group $(G,+)$ of size $κ$, there exists a map $f:G\rightarrow G$ such that, for every $X\subseteq G$ of size $κ$ and every $g\in G$, there exist $x\neq y$ in $X$ such that $f(x+y)=g$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源