论文标题

Cycleisp:通过改进的数据合成的真实图像恢复

CycleISP: Real Image Restoration via Improved Data Synthesis

论文作者

Zamir, Syed Waqas, Arora, Aditya, Khan, Salman, Hayat, Munawar, Khan, Fahad Shahbaz, Yang, Ming-Hsuan, Shao, Ling

论文摘要

大规模数据集的可用性有助于释放深卷积神经网络(CNN)的真正潜力。但是,对于单形图像降解问题,捕获真实数据集是一个不可接受的昂贵且繁琐的过程。因此,图像deno的算法主要是在合成数据上开发和评估的,这些数据通常以广泛的假设为添加剂白色高斯噪声(AWGN)产生。尽管CNN在这些合成数据集上取得了令人印象深刻的结果,但在最近的基准数据集中报道的那样,它们在真实的相机图像上的应用不佳。这主要是因为AWGN不足以建模真正的相机噪声,该摄像机依赖于信号依赖性,并且由摄像机成像管道对其进行了重大转换。在本文中,我们提出了一个框架,该框架将相机成像管道建模为前向和反向方向。它使我们能够生成任何数量的逼真的图像对,以在RAW和SRGB空间中脱氧。通过训练在现实合成数据上训练新的图像Denoising网络,我们在真实的相机基准数据集上实现了最先进的性能。我们模型中的参数比以前的原始denoising方法低约5倍。此外,我们证明了所提出的框架概括了图像超出图像降级问题,例如,在立体电影院中的颜色匹配。源代码和预培训模型可在https://github.com/swz30/cycleisp上找到。

The availability of large-scale datasets has helped unleash the true potential of deep convolutional neural networks (CNNs). However, for the single-image denoising problem, capturing a real dataset is an unacceptably expensive and cumbersome procedure. Consequently, image denoising algorithms are mostly developed and evaluated on synthetic data that is usually generated with a widespread assumption of additive white Gaussian noise (AWGN). While the CNNs achieve impressive results on these synthetic datasets, they do not perform well when applied on real camera images, as reported in recent benchmark datasets. This is mainly because the AWGN is not adequate for modeling the real camera noise which is signal-dependent and heavily transformed by the camera imaging pipeline. In this paper, we present a framework that models camera imaging pipeline in forward and reverse directions. It allows us to produce any number of realistic image pairs for denoising both in RAW and sRGB spaces. By training a new image denoising network on realistic synthetic data, we achieve the state-of-the-art performance on real camera benchmark datasets. The parameters in our model are ~5 times lesser than the previous best method for RAW denoising. Furthermore, we demonstrate that the proposed framework generalizes beyond image denoising problem e.g., for color matching in stereoscopic cinema. The source code and pre-trained models are available at https://github.com/swz30/CycleISP.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源