论文标题
几何$ 3 $ manifolds的基本群体中的扭曲共轭
Twisted conjugacy in fundamental groups of geometric $3$-manifolds
论文作者
论文摘要
组$ g $具有属性$ r_ \ infty $,如果对于aut(g)$中的每一个$ ϕ \,则有$ g $中的无限数量的$ ϕ $ twist $ twist cos-twist conigacy类。在本说明中,我们确定$ r_ \ infty $ -property for $ g =π_1(m)$的所有几何$ 3 $ - manifolds $ m $。
A group $G$ has property $R_\infty$ if for every $ϕ\in Aut(G)$, there are an infinite number of $ϕ$-twisted conjugacy classes of elements in $G$. In this note, we determine the $R_\infty$-property for $G=π_1(M)$ for all geometric $3$-manifolds $M$.