论文标题
使用部分标签信息的半监督对比度学习
Semi-supervised Contrastive Learning Using Partial Label Information
论文作者
论文摘要
在半监督的学习中,使用未标记的示例中的信息用于改善从标记的示例中学到的模型。在某些学习问题中,可以从其他未标记的示例中推断出部分标签信息,并用于进一步改善模型。特别是,当已知培训示例的子集具有相同的标签时,即使标签本身丢失,部分标签信息也存在。通过鼓励模型通过对比的学习目标为所有此类示例提供相同的标签,我们可以潜在地提高其性能。我们之所以称呼为“鼓励无空间调谐”,是因为任何示例之间具有相同标签的示例之间的差异向量应位于线性模型的无缝隙中。在本文中,我们调查了使用仔细比较框架与特征良好的公共数据集使用部分标签信息的好处。我们表明,部分标签提供的其他信息可将测试错误比良好的半监督方法减少2倍,最高为5.5倍。我们还表明,将NullSpace调整添加到新的和最先进的MixMatch方法将其测试误差降低到1.8倍。
In semi-supervised learning, information from unlabeled examples is used to improve the model learned from labeled examples. In some learning problems, partial label information can be inferred from otherwise unlabeled examples and used to further improve the model. In particular, partial label information exists when subsets of training examples are known to have the same label, even though the label itself is missing. By encouraging the model to give the same label to all such examples through contrastive learning objectives, we can potentially improve its performance. We call this encouragement Nullspace Tuning because the difference vector between any pair of examples with the same label should lie in the nullspace of a linear model. In this paper, we investigate the benefit of using partial label information using a careful comparison framework over well-characterized public datasets. We show that the additional information provided by partial labels reduces test error over good semi-supervised methods usually by a factor of 2, up to a factor of 5.5 in the best case. We also show that adding Nullspace Tuning to the newer and state-of-the-art MixMatch method decreases its test error by up to a factor of 1.8.