论文标题
两条椭圆曲线产品的理性点和分支覆盖率
Rational points and ramified covers of products of two elliptic curves
论文作者
论文摘要
Corvaja和Zannier猜想,一个数字字段的Abelian品种满足了Hilbert Property的修改版本。我们使用川玛塔(Kawamata)的结构结果研究了它们对椭圆曲线的产物的猜想,这些结构结果对阿贝利亚品种的覆盖率分后覆盖,以及在较高属曲线上对有理点的有限定理。
Corvaja and Zannier conjectured that an abelian variety over a number field satisfies a modified version of the Hilbert property. We investigate their conjecture for products of elliptic curves using Kawamata's structure result for ramified covers of abelian varieties, and Faltings's finiteness theorem for rational points on higher genus curves.