论文标题
在1D随机媒体中执行Lévy步行的海浪延迟时间
Delay time of waves performing Lévy walks in 1D random media
论文作者
论文摘要
在实验和理论上研究了波浪在1D随机介质中花费的时间。量子和经典波扩散的动力学已通过延迟时间在规范无序系统中进行了研究。我们表明,一系列的疾病 - 莱维疾病 - 导致延迟时间的强烈随机波动。然而,某些统计特性,例如分布的尾巴和延迟时间的平均值对Lévy步行不敏感。我们的结果揭示了波浪传播的普遍特征,它超出了标准的布朗波扩散。
The time that waves spend inside 1D random media with the possibility of performing Lévy walks is experimentally and theoretically studied. The dynamics of quantum and classical wave diffusion has been investigated in canonical disordered systems via the delay time. We show that a wide class of disorder--Lévy disorder--leads to strong random fluctuations of the delay time; nevertheless, some statistical properties such as the tail of the distribution and the average of the delay time are insensitive to Lévy walks. Our results reveal a universal character of wave propagation that goes beyond standard Brownian wave-diffusion.