论文标题

a^2-GCN:属性感知的专注GCN模型

A^2-GCN: An Attribute-aware Attentive GCN Model for Recommendation

论文作者

Liu, Fan, Cheng, Zhiyong, Zhu, Lei, Liu, Chenghao, Nie, Liqiang

论文摘要

作为重要的侧面信息,在现有推荐系统中已广泛利用属性,以提高性能。在实际情况下,通常缺少项目/用户的某些属性(例如,某些电影错过了类型数据)。先前的研究通常使用默认值(即“其他”)来表示缺失的属性,从而导致次优性能。为了解决此问题,在本文中,我们提出了一个属性感知的专注图卷积网络($ {^2} $ -GCN)。特别是,我们首先构建图形,用户,项目和属性是三种类型的节点,它们的关联是边缘。此后,我们利用图形卷积网络来表征<用户,项目,属性>之间的复杂交互。为了学习节点表示形式,我们转向通过消息策略来汇总从其他直接链接的节点(例如用户或属性)传递的消息。为此,我们能够合并关联属性来增强用户和项目表示形式,从而自然解决属性缺失的问题。考虑到对于不同用户的事实,项目的属性对其对该项目的偏好有不同的影响,我们设计了一种新颖的注意机制来通过考虑属性信息来过滤从项目传递给目标用户的消息。已经在几个可公开访问的数据集上进行了广泛的实验,以证明我们的模型是合理的。结果表明,我们的模型表现优于几种最新方法,并证明了我们注意方法的有效性。

As important side information, attributes have been widely exploited in the existing recommender system for better performance. In the real-world scenarios, it is common that some attributes of items/users are missing (e.g., some movies miss the genre data). Prior studies usually use a default value (i.e., "other") to represent the missing attribute, resulting in sub-optimal performance. To address this problem, in this paper, we present an attribute-aware attentive graph convolution network (A${^2}$-GCN). In particular, we first construct a graph, whereby users, items, and attributes are three types of nodes and their associations are edges. Thereafter, we leverage the graph convolution network to characterize the complicated interactions among <users, items, attributes>. To learn the node representation, we turn to the message-passing strategy to aggregate the message passed from the other directly linked types of nodes (e.g., a user or an attribute). To this end, we are capable of incorporating associate attributes to strengthen the user and item representations, and thus naturally solve the attribute missing problem. Considering the fact that for different users, the attributes of an item have different influence on their preference for this item, we design a novel attention mechanism to filter the message passed from an item to a target user by considering the attribute information. Extensive experiments have been conducted on several publicly accessible datasets to justify our model. Results show that our model outperforms several state-of-the-art methods and demonstrate the effectiveness of our attention method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源