论文标题
将Schrodinger方程式理解为运动陈述:量子的概率优先
Understanding the Schrodinger equation as a kinematic statement: A probability-first approach to quantum
论文作者
论文摘要
由于成功的商业技术浪潮,量子技术正在引起兴趣的巨大爆炸。由于需要更广泛的工程师和科学家,现在是时候重新考虑量子教育范例了。当前的方法通常始于古典物理,线性代数或微分方程。本章主张从概率理论开始。在本章概述的方法中,明确的量子力学公理的方式较少。取而代之的是,历史上有问题的测量公理是从概率理论继承的,其中许多哲学辩论仍然存在。尽管这不是介绍材料的典型途径,但该路线仍然是量子力学的标准有利位置。本章概述了通过考虑量子概率函数(密度矩阵)的允许转换来到达Schrödinger方程的基本途径。本章的核心宗旨是概率理论为引入量子科学提供了最佳的概念和数学基础。
Quantum technology is seeing a remarkable explosion in interest due to a wave of successful commercial technology. As a wider array of engineers and scientists are needed, it is time we rethink quantum educational paradigms. Current approaches often start from classical physics, linear algebra, or differential equations. This chapter advocates for beginning with probability theory. In the approach outlined in this chapter, there is less in the way of explicit axioms of quantum mechanics. Instead the historically problematic measurement axiom is inherited from probability theory where many philosophical debates remain. Although not a typical route in introductory material, this route is nonetheless a standard vantage on quantum mechanics. This chapter outlines an elementary route to arrive at the Schrödinger equation by considering allowable transformations of quantum probability functions (density matrices). The central tenet of this chapter is that probability theory provides the best conceptual and mathematical foundations for introducing the quantum sciences.