论文标题
与集合序列和对应关系不同的方式的收敛和连续性的表述。
Formulation of Convergence and Continuity in Variation of Sets in a Different Way from Sequences of Sets and Correspondence
论文作者
论文摘要
本文处理集合的变化。我们试图以与集合序列和对应关系的理论不同的方式来制定集合值函数的收敛性和连续性。在最后一部分中,我们还尝试通过两组之间的两组之间的两组来定义欧几里得空间中集合值函数的分化。
This paper treats the variation of sets. We attempt to formulate convergence and continuity of set-valued functions in a different way from the theories on sequences of sets and correspondence. In the final section, we also attempt to define differentiation of set-valued functions in a Euclidean space by bijection between two sets.