论文标题

Bicanet:图像语义分割的双向上下文集合网络

BiCANet: Bi-directional Contextual Aggregating Network for Image Semantic Segmentation

论文作者

Zhou, Quan, Cong, Dechun, Kang, Bin, Wu, Xiaofu, Zheng, Baoyu, Lu, Huimin, Latecki, Longin Jan

论文摘要

近年来,探索卷积神经网络(CNN)中的上下文信息已引起了语义细分的重大关注。本文介绍了一个双向上下文聚合网络,称为Bicanet,用于语义分割。与以前在特征空间中编码上下文的方法不同,Bicanet从分类角度汇总了上下文提示,该角度主要由三个部分组成:上下文凝聚的投影块(CCPB)(CCPB),双向上下文交互块(BCIB)(BCIB)和MUTI Scale Scale cale Contical Fusine Fusion fusion Block(MCFB)(MCFB)。更具体地说,CCPB通过拆分转换 - 合并体系结构学习了基于类别的映射,该架构将上下文提示与中间层的不同接收领域凝结。另一方面,BCIB采用密集的跳过连接来增强班级上下文的交换。最后,MCFB通过研究短期和长期的空间依赖性来整合多尺度上下文线索。为了评估Bicanet,我们对三个语义分割数据集进行了广泛的实验:Pascal VOC 2012,CityScapes和ADE20K。实验结果表明,Bicanet在没有任何后进程技术的情况下优于最新的最新网络。尤其是,Bicanet在Pascal VOC 2012,CityScapes和ADE20K测试集的MIOU得分分别为86.7%,82.4%和38.66%。

Exploring contextual information in convolution neural networks (CNNs) has gained substantial attention in recent years for semantic segmentation. This paper introduces a Bi-directional Contextual Aggregating Network, called BiCANet, for semantic segmentation. Unlike previous approaches that encode context in feature space, BiCANet aggregates contextual cues from a categorical perspective, which is mainly consist of three parts: contextual condensed projection block (CCPB), bi-directional context interaction block (BCIB), and muti-scale contextual fusion block (MCFB). More specifically, CCPB learns a category-based mapping through a split-transform-merge architecture, which condenses contextual cues with different receptive fields from intermediate layer. BCIB, on the other hand, employs dense skipped-connections to enhance the class-level context exchanging. Finally, MCFB integrates multi-scale contextual cues by investigating short- and long-ranged spatial dependencies. To evaluate BiCANet, we have conducted extensive experiments on three semantic segmentation datasets: PASCAL VOC 2012, Cityscapes, and ADE20K. The experimental results demonstrate that BiCANet outperforms recent state-of-the-art networks without any postprocess techniques. Particularly, BiCANet achieves the mIoU score of 86.7%, 82.4% and 38.66% on PASCAL VOC 2012, Cityscapes and ADE20K testset, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源