论文标题
与参数学习应用于车辆轨迹估计的变异推断
Variational Inference with Parameter Learning Applied to Vehicle Trajectory Estimation
论文作者
论文摘要
我们仅使用嘈杂的测量值(即没有地面图),在高斯变异推理设置中介绍参数学习。尽管我们提出的方法是一般的,但在车辆轨迹估计的背景下进行了证明。该论文扩展了精确的稀疏高斯变异推理(ESGVI)框架,该框架先前已用于大规模的非线性批处理状态估计。我们的贡献是在ESGVI框架内学习系统模型的参数(在实践中可能很难选择)。在本文中,我们了解了车辆轨迹估计中使用的运动和传感器模型的协方差。具体而言,我们了解了我们的传感器模型的白色噪声运动模型的参数和逆向临界事先测量协方差的参数。我们使用36 km的数据集证明了我们的技术,该数据集由使用LIDAR组成的汽车组成,以针对高清图定位;我们在数据的培训部分中学习了参数,然后表明即使在存在异常值的情况下,我们也可以在测试部分上实现高质量的状态估计。最后,我们证明,即使有许多错误的循环封闭,我们的框架也可以用于求解姿势图优化。
We present parameter learning in a Gaussian variational inference setting using only noisy measurements (i.e., no groundtruth). This is demonstrated in the context of vehicle trajectory estimation, although the method we propose is general. The paper extends the Exactly Sparse Gaussian Variational Inference (ESGVI) framework, which has previously been used for large-scale nonlinear batch state estimation. Our contribution is to additionally learn parameters of our system models (which may be difficult to choose in practice) within the ESGVI framework. In this paper, we learn the covariances for the motion and sensor models used within vehicle trajectory estimation. Specifically, we learn the parameters of a white-noise-on-acceleration motion model and the parameters of an Inverse-Wishart prior over measurement covariances for our sensor model. We demonstrate our technique using a 36~km dataset consisting of a car using lidar to localize against a high-definition map; we learn the parameters on a training section of the data and then show that we achieve high-quality state estimates on a test section, even in the presence of outliers. Lastly, we show that our framework can be used to solve pose graph optimization even with many false loop closures.