论文标题

Adamchuk的猜想的证明

Proof of a conjecture of Adamchuk

论文作者

Mao, Guo-Shuai

论文摘要

在本文中,我们证明了一个一致性,证实了Adamchuk的猜想。对于任何prime $ p \ equiv1 \ pmod3 $和$ a \ in \ mathbb {z}^{+} $,我们有\ begin {align*} \ sum_ {k = 1}^{\ frac {\ frac {2} 3(p^a-a-1)} \ binom} \ binom \ end {align*}

In this paper, we prove a congruence which confirms a conjecture of Adamchuk. For any prime $p\equiv1\pmod3$ and $a\in\mathbb{Z}^{+}$, we have \begin{align*} \sum_{k=1}^{\frac{2}3(p^a-1)}\binom{2k}k\equiv0\pmod{p^2}. \end{align*}

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源