论文标题

Hiertrain:在移动边缘云计算中使用混合并行性的快速分层边缘AI学习

HierTrain: Fast Hierarchical Edge AI Learning with Hybrid Parallelism in Mobile-Edge-Cloud Computing

论文作者

Liu, Deyin, Chen, Xu, Zhou, Zhi, Ling, Qing

论文摘要

如今,深度神经网络(DNNS)是许多新兴边缘AI应用程序的核心推动力。通常在中央服务器或云中心实施训练DNN的常规方法,用于集中学习,这通常是由于将大量数据样本从设备传输到远程云而耗时和资源要求。为了克服这些缺点,我们考虑在移动边缘云计算(MECC)范式上加速DNN的学习过程。在本文中,我们提出了Hiertrain,这是一个层次的边缘AI学习框架,该框架有效地通过层次结构MECC体系结构部署了DNN培训任务。我们开发了一种新颖的\ textit {hybrid Parallelism}方法,它是Hiertrain的关键,可以自适应地分配DNN模型层和数据示例在边缘设备,边缘服务器和云中心的三个级别上。然后,我们制定了在层粒状和样品粒状上安排DNN训练任务的问题。解决此优化问题使我们能够达到最低训练时间。我们进一步实施了由边缘设备,边缘服务器和云服务器组成的硬件原型,并在其上进行了广泛的实验。实验结果表明,与基于云的分层训练方法相比,Hiertrain可以达到高达6.9倍的速度。

Nowadays, deep neural networks (DNNs) are the core enablers for many emerging edge AI applications. Conventional approaches to training DNNs are generally implemented at central servers or cloud centers for centralized learning, which is typically time-consuming and resource-demanding due to the transmission of a large amount of data samples from the device to the remote cloud. To overcome these disadvantages, we consider accelerating the learning process of DNNs on the Mobile-Edge-Cloud Computing (MECC) paradigm. In this paper, we propose HierTrain, a hierarchical edge AI learning framework, which efficiently deploys the DNN training task over the hierarchical MECC architecture. We develop a novel \textit{hybrid parallelism} method, which is the key to HierTrain, to adaptively assign the DNN model layers and the data samples across the three levels of edge device, edge server and cloud center. We then formulate the problem of scheduling the DNN training tasks at both layer-granularity and sample-granularity. Solving this optimization problem enables us to achieve the minimum training time. We further implement a hardware prototype consisting of an edge device, an edge server and a cloud server, and conduct extensive experiments on it. Experimental results demonstrate that HierTrain can achieve up to 6.9x speedup compared to the cloud-based hierarchical training approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源