论文标题

在Sitter Spacetime中量化真实Klein-Gordon场的一般协变理论

A Generally Covariant Theory of Quantized Real Klein-Gordon Field in de Sitter Spacetime

论文作者

Feng, Sze-Shiang

论文摘要

我们在本文中提出了一种在Sitter Spacetime中对真正的Klein-Gordon场的量化方案。我们的方案通常在Vierbein的帮助下是协变量的,Vierbein通常对于弯曲时空中的旋转场是必不可少的。我们首先提出了哈密顿结构,然后按照标准方法量化场。对于自由场,时间依赖性的量化哈密顿量是通过Bogliubov转换对角度对角线的,并且每个瞬间的特征园被解释为当时观察到的粒子状态。该解释由已知的宇宙学红移公式和自由场的4摩托姆的壳体条件支持。尽管为了方便起见,数学是按照条形坐标术语进行的,但可以根据一般协方差将整个理论转化为任何其他坐标。可以得出结论,诸如真空状态之类的粒子状态在以后的时间依赖于时间依赖性,真空状态一次将真空状态演变为非vacuum状态。扰动的形式主义带有扩展的狄拉克图片。

We propose in this paper a quantization scheme for real Klein-Gordon field in de Sitter spacetime. Our scheme is generally covariant with the help of vierbein, which is necessary usually for spinor field in curved spacetime. We first present a Hamiltonian structure, then quantize the field following the standard approach. For the free field, the time-dependent quantized Hamiltonian is diagonalized by Bogliubov transformation and the eigen-states at each instant are interpreted as the observed particle states at that instant. The interpretation is supported by the known cosmological red-shift formula and the on-shell condition of 4-momentum for a free field. Though the mathematics is carried out in term of conformal coordinates for the sake of convenience, the whole theory can be transformed into any other coordinates based on general covariance. It is concluded that particle states, such as vacuum states in particular are time-dependent and vacuum states at one time evolves into non-vacuum states at later times. Formalism of perturbational is provided with an extended Dirac picture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源