论文标题
Lieb拓扑浮雕绝缘子中的边缘孤子
Edge Solitons in Lieb Topological Floquet Insulators
论文作者
论文摘要
我们描述了连续脱位的螺旋波导阵列中的拓扑边缘孤子。该结构的线性浮子光谱的特征是存在两个拓扑间隙,其中有边缘状态。焦点非线性使拓扑边缘孤子族的家庭从线性边缘状态分叉。这样的孤子在阵列的边缘都位于局部。由于边缘状态在BLOCH动量上的传播常数的非单调依赖性,因此可以构建拓扑边缘孤子子,这些拓扑边缘可以沿着同一边界向不同方向传播或不移动。这使我们能够研究朝相反方向移动的边缘孤子的碰撞。这样的孤子总是互相互穿,而没有明显的辐射损失。但是,它们表现出取决于初始相位差异的空间变化。
We describe topological edge solitons in a continuous dislocated Lieb array of helical waveguides. The linear Floquet spectrum of this structure is characterized by the presence of two topological gaps with edge states residing in them. A focusing nonlinearity enables families of topological edge solitons bifurcating from the linear edge states. Such solitons are localized both along and across the edge of the array. Due to the non-monotonic dependence of the propagation constant of the edge states on the Bloch momentum, one can construct topological edge solitons that either propagate in different directions along the same boundary or do not move. This allows us to study collisions of edge solitons moving in the opposite directions. Such solitons always interpenetrate each other without noticeable radiative losses; however, they exhibit a spatial shift that depends on the initial phase difference.