论文标题

野外的一声知情的机器人视觉搜索

One-Shot Informed Robotic Visual Search in the Wild

论文作者

Koreitem, Karim, Shkurti, Florian, Manderson, Travis, Chang, Wei-Di, Higuera, Juan Camilo Gamboa, Dudek, Gregory

论文摘要

我们考虑水下机器人导航的任务,目的是收集科学相关的视频数据进行环境监测。当前在非结构化自然环境中执行监视任务的大多数现场机器人通过跟踪预先指定的航路点序列导航。尽管这种导航方法通常是必要的,但它是限制的,因为机器人没有科学家认为是相关的视觉观察的模型。因此,机器人既不能在视觉上搜索特定类型的对象,也不能将注意力集中在场景的一部分上,这些部分可能比预先指定的航点和观点更相关。在本文中,我们提出了一种通过学习的视觉相似性操作员来启用知情的视觉导航的方法,该操作员将机器人的视觉搜索引导到场景的某些部分,看起来像是示例映像,用户将其作为数据收集的高级规范给出。我们提出和评估一种弱监督的视频表示方法,该方法胜过Imagenet嵌入在水下领域中的相似性任务。我们还在大规模的现场试验中,在合作的环境监测方案中,在知情的视觉导航中展示了这种相似性操作员的部署,在大规模实地试验中,机器人和人类科学家在其中合作寻找相关的视觉内容。

We consider the task of underwater robot navigation for the purpose of collecting scientifically relevant video data for environmental monitoring. The majority of field robots that currently perform monitoring tasks in unstructured natural environments navigate via path-tracking a pre-specified sequence of waypoints. Although this navigation method is often necessary, it is limiting because the robot does not have a model of what the scientist deems to be relevant visual observations. Thus, the robot can neither visually search for particular types of objects, nor focus its attention on parts of the scene that might be more relevant than the pre-specified waypoints and viewpoints. In this paper we propose a method that enables informed visual navigation via a learned visual similarity operator that guides the robot's visual search towards parts of the scene that look like an exemplar image, which is given by the user as a high-level specification for data collection. We propose and evaluate a weakly supervised video representation learning method that outperforms ImageNet embeddings for similarity tasks in the underwater domain. We also demonstrate the deployment of this similarity operator during informed visual navigation in collaborative environmental monitoring scenarios, in large-scale field trials, where the robot and a human scientist collaboratively search for relevant visual content.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源