论文标题
使用置换有理功能改进了置换阵列的下限
Improved Lower Bounds for Permutation Arrays Using Permutation Rational Functions
论文作者
论文摘要
我们考虑表单$ v(x)/u(x)$的有理功能,其中$ v(x)$和$ u(x)$都是有限字段$ \ mathbb {f} _q $的多项式。数十年来一直是研究的多项式,称为{\ IT置换多项式($ pps $)}的多项式。令$ {\ Mathcal P}^1(\ Mathbb {f} _Q)$ deote $ \ mathbb {z} _q \ cup \ cup \ {\ infty \} $。如果有理函数,$ v(x)/u(x)$,将$ {\ mathcal p}^1的元素(\ mathbb {f} _q)$的元素称为{\ em prespuartional prescor Rational function(prf)}。令$ n_d(q)$表示$ \ mathbb {f} _q $上的$ d $的pps的数量,然后让$ n_ {v,u}(q)$表示带有$ v $的分子的PRF的数量,并表示$ v $的分子和级分母。因此,$ n_ {d,0}(q)= n_d(q)$,因此PRFS是PPS的概括。已知的3型PRF的数量[11]。我们为$ n_ {v,u}(q)$开发有效的计算技术,并用它们显示$ n_ {4,3}(q)(q+1)q^2(q-1)q^2(q-1)^2/3 $,用于所有Prime Powers $ q \ le q \ le 307 $,$ n_ {5,4}(q+1)$ n_ 97 $,和$ n_ {4,4}(p)=(p+1)p^2(p-1)^3/3 $,用于所有Primes $ p \ le 47 $。我们猜想这些公式实际上是所有Prime Powers $ Q $的正确性。令$ m(n,d)$表示带有成对锤距$ d $的$ n $符号上的最大排列数。计算改进的$ M(n,d)$的下限是许多当前研究的主题,其应用程序纠正代码的应用程序。使用PRFS,我们在$ M(Q,Q-D)$和$ M(Q+1,Q-D)$上获得了明显改进的下限,以$ d \ in \ {5,7,9 \} $。
We consider rational functions of the form $V(x)/U(x)$, where both $V(x)$ and $U(x)$ are polynomials over the finite field $\mathbb{F}_q$. Polynomials that permute the elements of a field, called {\it permutation polynomials ($PPs$)}, have been the subject of research for decades. Let ${\mathcal P}^1(\mathbb{F}_q)$ denote $\mathbb{Z}_q \cup \{\infty\}$. If the rational function, $V(x)/U(x)$, permutes the elements of ${\mathcal P}^1(\mathbb{F}_q)$, it is called a {\em permutation rational function (PRf)}. Let $N_d(q)$ denote the number of PPs of degree $d$ over $\mathbb{F}_q$, and let $N_{v,u}(q)$ denote the number of PRfs with a numerator of degree $v$ and a denominator of degree $u$. It follows that $N_{d,0}(q) = N_d(q)$, so PRFs are a generalization of PPs. The number of monic degree 3 PRfs is known [11]. We develop efficient computational techniques for $N_{v,u}(q)$, and use them to show $N_{4,3}(q) = (q+1)q^2(q-1)^2/3$, for all prime powers $q \le 307$, $N_{5,4}(q) > (q+1)q^3(q-1)^2/2$, for all prime powers $q \le 97$, and $N_{4,4}(p) = (p+1)p^2(p-1)^3/3$, for all primes $p \le 47$. We conjecture that these formulas are, in fact, true for all prime powers $q$. Let $M(n,D)$ denote the maximum number of permutations on $n$ symbols with pairwise Hamming distance $D$. Computing improved lower bounds for $M(n,D)$ is the subject of much current research with applications in error correcting codes. Using PRfs, we obtain significantly improved lower bounds on $M(q,q-d)$ and $M(q+1,q-d)$, for $d \in \{5,7,9\}$.