论文标题

深贝叶斯高斯流程,用于电子健康记录中的不确定性估计

Deep Bayesian Gaussian Processes for Uncertainty Estimation in Electronic Health Records

论文作者

Li, Yikuan, Rao, Shishir, Hassaine, Abdelaali, Ramakrishnan, Rema, Zhu, Yajie, Canoy, Dexter, Salimi-Khorshidi, Gholamreza, Lukasiewicz, Thomas, Rahimi, Kazem

论文摘要

更广泛使用深度学习来制定临床决策的一个主要障碍是将一定的信心分配给建模预测的困难。当前,深贝叶斯神经网络和稀疏的高斯过程是主要的两个可扩展性不确定性估计方法。但是,深贝叶斯神经网络缺乏表现力,而更具表现力的模型(例如深内核学习)是稀疏高斯过程的扩展,仅捕获了高级潜在空间的不确定性。因此,其下的深度学习模型缺乏可解释性,并且忽略了原始数据的不确定性。在本文中,我们将深贝叶斯学习框架的特征与深内核学习相结合,以利用两种方法的优势,以进行更全面的不确定性估计。通过一系列有关预测心力衰竭的首次发生的实验,糖尿病和抑郁症应用于大规模的电子医疗记录,我们证明,与高斯过程和深层贝叶斯神经网络相比,我们在捕获不确定性方面更好地捕获了数据不足,并以表明数据不足和虚假的积极预测,并具有相当的总体化绩效。此外,通过评估接收器操作特征曲线的准确性和面积优于预测概率,我们表明我们的方法不太容易受到过度表现的预测,尤其是对于不平衡数据集中的少数族裔类别。最后,我们证明该模型得出的不确定性信息如何将风险因素分析指向模型可解释性。

One major impediment to the wider use of deep learning for clinical decision making is the difficulty of assigning a level of confidence to model predictions. Currently, deep Bayesian neural networks and sparse Gaussian processes are the main two scalable uncertainty estimation methods. However, deep Bayesian neural network suffers from lack of expressiveness, and more expressive models such as deep kernel learning, which is an extension of sparse Gaussian process, captures only the uncertainty from the higher level latent space. Therefore, the deep learning model under it lacks interpretability and ignores uncertainty from the raw data. In this paper, we merge features of the deep Bayesian learning framework with deep kernel learning to leverage the strengths of both methods for more comprehensive uncertainty estimation. Through a series of experiments on predicting the first incidence of heart failure, diabetes and depression applied to large-scale electronic medical records, we demonstrate that our method is better at capturing uncertainty than both Gaussian processes and deep Bayesian neural networks in terms of indicating data insufficiency and distinguishing true positive and false positive predictions, with a comparable generalisation performance. Furthermore, by assessing the accuracy and area under the receiver operating characteristic curve over the predictive probability, we show that our method is less susceptible to making overconfident predictions, especially for the minority class in imbalanced datasets. Finally, we demonstrate how uncertainty information derived by the model can inform risk factor analysis towards model interpretability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源