论文标题

分数非局部连续性的热力学及其在光束热弹性响应中的应用

Thermodynamics of fractional-order nonlocal continua and its application to the thermoelastic response of beams

论文作者

Sidhardh, Sai, Patnaik, Sansit, Semperlotti, Fabio

论文摘要

这项研究提出了一个综合框架,用于对固体中非局部热弹性的框架不变的分数方法进行组成式建模。为此,对于使用分数连续理论建模的非局部固体,得出了热力学和机械平衡定律。这包括重新审查凯奇(Cauchy)对表面牵引载体的假设,以说明非局部固体域之间的远程相互作用。值得注意的是,与现有的非局部弹性相比,分数模型允许对热力学平衡原理的严格局部应用。此外,此处获得的分数固体运动的机械控制运动方程与各种原理的现有结果一致。这些分数阶程的方程涉及自动化算子并接受独特的解决方案,与当地库奇的假设相比,类似研究。为了说明该框架的功效,此处考虑了受热机械载荷约合的非局部光束的线性和几何非线性响应的案例研究。与现有的整数积分非本地方法进行比较突出了由分数阶框架预测的非本地结构的一致软化响应,而与边界和热机械加载条件无关。后一个方面解决了在非局部弹性的基于应变的积分方法中经常观察到的重要不一致。

This study presents a comprehensive framework for constitutive modeling of a frame-invariant fractional-order approach to nonlocal thermoelasticity in solids. For this purpose, thermodynamic and mechanical balance laws are derived for nonlocal solids modeled using the fractional-order continuum theory. This includes revisiting the Cauchy's hypothesis for surface traction vector in order to account for long-range interactions across the domain of nonlocal solid. Remarkably, it is shown that the fractional-order model allows the rigorous localized application of thermodynamic balance principles unlike existing integral approaches to nonlocal elasticity. Further, the mechanical governing equations of motion for the fractional-order solids obtained here are consistent with existing results from variational principles. These fractional-order governing equations involve self-adjoint operators and admit unique solutions, in contrast to analogous studies following the local Cauchy's hypothesis. To illustrate the efficacy of this framework, case-studies for the linear and the geometrically nonlinear responses of nonlocal beams subject to combined thermomechanical loads are considered here. Comparisons with existing integer-order integral nonlocal approaches highlight a consistent softening response of nonlocal structures predicted by the fractional-order framework, irrespective of the boundary and thermomechanical loading conditions. This latter aspect addresses an important incongruence often observed in strain-based integral approaches to nonlocal elasticity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源