论文标题
学习计算成像传感器选择的概率策略
Learning a Probabilistic Strategy for Computational Imaging Sensor Selection
论文作者
论文摘要
当必须从严格有限的测量结果中恢复图像时,优化的传感对于在低资源环境中的计算成像很重要。在本文中,我们提出了一种物理限制,完全可区分的自动编码器,它可以学习一种概率传感器采样策略,以优化传感器设计。该方法学习了系统的首选采样分布,该分布将不同的传感器选择之间的相关性描述为二进制,完全连接的ISING模型。通过使用GIBBS采样启发的网络体系结构,可以实现学习的概率模型,并通过重建网络进行端到端训练,以进行有效的共同设计。所提出的框架适用于各种计算成像应用中的传感器选择问题。在本文中,我们在非常长的基线间距(VLBI)阵列设计任务中演示了这种方法,其中传感器的相关性和大气噪声带来了独特的挑战。我们证明了与期望的总体一致的结果,并引起人们对望远镜阵列几何形状首选的特定结构的关注,这些结构可以利用以计划未来的观察和设计阵列扩展。
Optimized sensing is important for computational imaging in low-resource environments, when images must be recovered from severely limited measurements. In this paper, we propose a physics-constrained, fully differentiable, autoencoder that learns a probabilistic sensor-sampling strategy for optimized sensor design. The proposed method learns a system's preferred sampling distribution that characterizes the correlations between different sensor selections as a binary, fully-connected Ising model. The learned probabilistic model is achieved by using a Gibbs sampling inspired network architecture, and is trained end-to-end with a reconstruction network for efficient co-design. The proposed framework is applicable to sensor selection problems in a variety of computational imaging applications. In this paper, we demonstrate the approach in the context of a very-long-baseline-interferometry (VLBI) array design task, where sensor correlations and atmospheric noise present unique challenges. We demonstrate results broadly consistent with expectation, and draw attention to particular structures preferred in the telescope array geometry that can be leveraged to plan future observations and design array expansions.