论文标题
在高等K组和高几何函数I中的Ross符号的概括I
A generalization of the Ross symbols in higher K-groups and hypergeometric functions I
论文作者
论文摘要
罗斯符号定义为fermat曲线z^n+w^m = 1的k_2中的元素{1-z,1-w \}。罗斯表明,通过计算贝林森调节剂是非扭转的。在本文中,我们在一个品种(1-x_0^{n_0})的K_ {D+1}中介绍了Ross符号的概括。主要结果是贝林森调节器由超几何函数{} _ {d+3} f_ {d+2}'s描述。
The Ross symbol is defined to be an element {1-z,1-w\} in K_2 of a Fermat curve z^n+w^m=1. Ross showed that it is non-torsion by computing the Beilinson regulator. In this paper, we introduce a generalization of the Ross symbols in K_{d+1} of a variety (1-x_0^{n_0})\cdots(1-x_d^{n_d})=t. The main result is that the Beilinson regulator is described by the hypergeometric functions {}_{d+3}F_{d+2}'s.