论文标题
Palm-Gan:使用总变化正规化GAN生成逼真的棕榈印刷图像
Palm-GAN: Generating Realistic Palmprint Images Using Total-Variation Regularized GAN
论文作者
论文摘要
生成逼真的棕榈印刷(更一般的生物识别)图像一直是一个有趣的问题,同时又是具有挑战性的问题。古典统计模型无法生成逼真的棕榈印刷图像,因为它们的功能不足以捕获棕榈印刷图像的复杂纹理表示。在这项工作中,我们提出了一个基于生成对抗网络(GAN)的深度学习框架,该框架能够生成逼真的掌上图像。为了帮助模型学习更现实的图像,我们建议在损失函数中添加合适的正则化,这施加了生成的棕榈印刷图像的线路连接。这对于棕榈印非常理想,因为棕榈中的主要线条通常连接起来。我们将此框架应用于流行的Palmprint数据库,并生成看起来非常现实的图像,并且与该数据库中的样本相似。通过实验结果,我们表明生成的棕榈印刷图像看起来非常现实,具有良好的多样性,并且能够捕获先前分布的不同部分。我们还报告了所提出的模型的Frechet Inception距离(FID),并表明我们的模型能够在FID得分方面实现真正良好的定量性能。
Generating realistic palmprint (more generally biometric) images has always been an interesting and, at the same time, challenging problem. Classical statistical models fail to generate realistic-looking palmprint images, as they are not powerful enough to capture the complicated texture representation of palmprint images. In this work, we present a deep learning framework based on generative adversarial networks (GAN), which is able to generate realistic palmprint images. To help the model learn more realistic images, we proposed to add a suitable regularization to the loss function, which imposes the line connectivity of generated palmprint images. This is very desirable for palmprints, as the principal lines in palm are usually connected. We apply this framework to a popular palmprint databases, and generate images which look very realistic, and similar to the samples in this database. Through experimental results, we show that the generated palmprint images look very realistic, have a good diversity, and are able to capture different parts of the prior distribution. We also report the Frechet Inception distance (FID) of the proposed model, and show that our model is able to achieve really good quantitative performance in terms of FID score.