论文标题
单眼人类姿势和形状重建使用零件可区分的渲染
Monocular Human Pose and Shape Reconstruction using Part Differentiable Rendering
论文作者
论文摘要
单眼图像的上级姿势和形状重建取决于消除遮挡和形状差异引起的歧义。最近的工作成功地基于回归的方法,这些方法通过3D地面真理监督的深度神经网络直接估算参数模型。但是,3D地面真理既不是丰富,也不能有效地获得。在本文中,我们将身体部位细分作为关键监督。零件分割不仅表示每个身体部位的形状,而且有助于推断零件之间的遮挡。为了通过部分细分改善重建,我们提出了一个零件级别的可区分渲染器,该渲染器可以通过神经网络或优化循环中的部分分段来监督零件模型。我们还引入了一个从事渲染管道的一般参数模型,作为骨骼和详细形状之间的中间表示,该模型由原始几何形状组成,以更好地解释性。提出的方法结合了参数回归,身体模型优化和详细的模型注册。实验结果表明,所提出的方法实现了对姿势和形状的平衡评估,并且优于人类36M,UP-3D和LSP数据集的最新方法。
Superior human pose and shape reconstruction from monocular images depends on removing the ambiguities caused by occlusions and shape variance. Recent works succeed in regression-based methods which estimate parametric models directly through a deep neural network supervised by 3D ground truth. However, 3D ground truth is neither in abundance nor can efficiently be obtained. In this paper, we introduce body part segmentation as critical supervision. Part segmentation not only indicates the shape of each body part but helps to infer the occlusions among parts as well. To improve the reconstruction with part segmentation, we propose a part-level differentiable renderer that enables part-based models to be supervised by part segmentation in neural networks or optimization loops. We also introduce a general parametric model engaged in the rendering pipeline as an intermediate representation between skeletons and detailed shapes, which consists of primitive geometries for better interpretability. The proposed approach combines parameter regression, body model optimization, and detailed model registration altogether. Experimental results demonstrate that the proposed method achieves balanced evaluation on pose and shape, and outperforms the state-of-the-art approaches on Human3.6M, UP-3D and LSP datasets.