论文标题
非本地Luttinger模型中广义流体动力学的出现
Emergence of generalized hydrodynamics in the non-local Luttinger model
论文作者
论文摘要
我们提出了具有有限范围相互作用的Luttinger模型,这是1+1个维度中的一个简单的可处理示例,以分析研究量子多体系统中Euler尺度流体动力学的出现。这个非本地Luttinger模型是在保形和贝塞 - 萨茨可整合模型之间的确切解决的量子场理论。应用了最新的广义流体动力学建议,我们表明该模型允许对所得的Euler尺度流体动力方程式完全明确但非平凡的溶液。与确切的分析性非平衡结果相比,当相互作用较短时,我们在Euler量表上显示出完美的一致性。还给出了在非本地Luttinger模型中广义流体动力学出现的形式证明,并简要讨论了远程相互作用的影响。
We propose the Luttinger model with finite-range interactions as a simple tractable example in 1+1 dimensions to analytically study the emergence of Euler-scale hydrodynamics in a quantum many-body system. This non-local Luttinger model is an exactly solvable quantum field theory somewhere between conformal and Bethe-ansatz integrable models. Applying the recent proposal of generalized hydrodynamics, we show that the model allows for fully explicit yet non-trivial solutions of the resulting Euler-scale hydrodynamic equations. Comparing with exact analytical non-equilibrium results valid at all time and length scales, we show perfect agreement at the Euler scale when the interactions are short range. A formal proof of the emergence of generalized hydrodynamics in the non-local Luttinger model is also given, and effects of long-range interactions are briefly discussed.