论文标题

冷原子拓扑绝缘子中的动力孤子和玻色子分数化

Dynamical solitons and boson fractionalization in cold-atom topological insulators

论文作者

González-Cuadra, Daniel, Dauphin, Alexandre, Grzybowski, Przemysław R., Lewenstein, Maciej, Bermudez, Alejandro

论文摘要

我们在不一致的密度下研究$ \ mathbb {z} _2 $ bose-hubbard型号,该模型描述了一种一维相互作用的玻色子系统,其隧道的隧道穿着动态$ \ mathbb {z} _2 _2 _2 $ field。在相称的密度下,该模型已知具有交织在一起的拓扑阶段,其中远程顺序与非平凡拓扑特性并存。当系统被掺杂到某些不固定的填充物上时,自发对称性破坏(SSB)和拓扑对称性保护之间的这种相互作用会产生有趣的分数拓扑现象。特别是,我们在此展示$ \ mathbb {z} _2 $字段中的拓扑缺陷如何以基础状态出现,并连接不同的SSB扇区。这些缺陷是动态的,可以穿过带有拓扑电荷和分数颗粒数的晶格。在硬核极限中,可以通过大量缺陷对应关系来理解这种现象。使用抽水参数,我们证明它也可以用于有限的相互作用,证明了在强相关的玻色粒系统中如何发生玻色子分数化,其主要成分已经在冷原子实验中实现。

We study the $\mathbb{Z}_2$ Bose-Hubbard model at incommensurate densities, which describes a one-dimensional system of interacting bosons whose tunneling is dressed by a dynamical $\mathbb{Z}_2$ field. At commensurate densities, the model is known to host intertwined topological phases, where long-range order coexists with non-trivial topological properties. This interplay between spontaneous symmetry breaking (SSB) and topological symmetry protection gives rise to interesting fractional topological phenomena when the system is doped to certain incommensurate fillings. In particular, we hereby show how topological defects in the $\mathbb{Z}_2$ field can appear in the ground state, connecting different SSB sectors. These defects are dynamical and can travel through the lattice carrying both a topological charge and a fractional particle number. In the hardcore limit, this phenomenon can be understood through a bulk-defect correspondence. Using a pumping argument, we show that it survives also for finite interactions, demonstrating how boson fractionalization can occur in strongly-correlated bosonic systems, the main ingredients of which have already been realized in cold-atom experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源