论文标题
在毫米波长下测得的谷神星的磁盘集成热性能
Disk-Integrated Thermal Properties of Ceres Measured at Millimeter Wavelengths
论文作者
论文摘要
我们在2015年11月和2017年的9月和10月在ALMA 12米阵列和2017年10月的Alma紧凑型阵列(ACA)观察到CERES,均为〜265 GHz Continuum(〜1.1 mm的波长),以在每个时代的一个全旋转中绘制Ceres的温度。我们还使用2017年10月的ACA观测来搜索HCN。在我们的2017年观察结果期间,测得的谷神星的磁盘平均亮度温度在170 K和180 K之间。 CERES的旋转光弯曲显示出双峰形状,振幅约为4%。我们的HCN搜索返回负面结果,上限生产率为〜2 $ \ times $ 10 $^{24} $分子S $^{ - 1} $,假设全球均匀生产和HASER模型。一个热物理模型表明,与1毫米的波长相比,谷物的顶层具有比月球样材料更高的介电吸收。然而,先前的观察结果表明,铜绿的介电吸收降低了更长的波长。这种独特的介电特性可能与谷神星的水合植物硅酸盐组成以及其表面上可能具有丰富的$ $ $ M级晶粒有关。 CERES的热惯性受到我们的建模的约束,可能在40至160 TIU之间,比以前的红外波长测量高得多。建模还表明,Ceres的光曲线可能由其物理或成分特性的空间变化所占据主导地位,这些变化会导致CERES观察到的热性能和介电吸收的变化。
We observed Ceres at three epochs in 2015 November and 2017 September and October with ALMA 12-meter array and in 2017 October with the ALMA Compact Array (ACA), all at ~265 GHz continuum (wavelengths of ~1.1 mm) to map the temperatures of Ceres over a full rotation at each epoch. We also used 2017 October ACA observations to search for HCN. The disk-averaged brightness temperature of Ceres is measured to be between 170 K and 180 K during our 2017 observations. The rotational lightcurve of Ceres shows a double peaked shape with an amplitude of about 4%. Our HCN search returns a negative result with an upper limit production rate of ~2$\times$10$^{24}$ molecules s$^{-1}$, assuming globally uniform production and a Haser model. A thermophysical model suggests that Ceres's top layer has higher dielectric absorption than lunar-like materials at a wavelength of 1 mm. However, previous observations showed that the dielectric absorption of Ceres decreases towards longer wavelengths. Such distinct dielectric properties might be related to the hydrated phyllosilicate composition of Ceres and possibly abundant $μ$m-sized grains on its surface. The thermal inertia of Ceres is constrained by our modeling as likely being between 40 and 160 tiu, much higher than previous measurements at infrared wavelengths. Modeling also suggests that Ceres's lightcurve is likely dominated by spatial variations in its physical or compositional properties that cause changes in Ceres's observed thermal properties and dielectric absorption as it rotates.