论文标题
在一系列积分二次形式的集合中
On the exceptional sets of integral quadratic forms
论文作者
论文摘要
如果在$ n $变量集中,$ n $变量中正面确定积分二次形式的等价类别的集合$ \数学s $,则称为$ n $ - 外部集合,如果存在一个积极的确定积分二次形式,代表$ n $ variables中$ n $ variables中的所有等价类别的所有等效类别,除$ n $ variables中的$ n $ variables中的所有等效类别外,我们表明,除其他结果外,对于任何给定的正整数$ m $和$ n $,总有一组$ n $的尺寸$ m $,并且其中只有许多。
A collection $\mathcal S$ of equivalence classes of positive definite integral quadratic forms in $n$ variables is called an $n$-exceptional set if there exists a positive definite integral quadratic form which represents all equivalence classes of positive definite integral quadratic forms in $n$ variables except those in $\mathcal S$. We show that, among other results, for any given positive integers $m$ and $n$, there is always an $n$-exceptional set of size $m$ and there are only finitely many of them.