论文标题

C-转运直径

C-transfinite diameter

论文作者

Levenberg, N., Wielonsky, F.

论文摘要

我们给出了紧凑型套件的$ c- $ transfinite直径$Δ_c(k)$ k \ subset \ subset \ mathbb {c}^2 $,这是单变量compacta的产物,其中$ c \ subset(\ mathbb {r}^+)^+)^2 $是一个侧面。一路走来,我们证明了$δ_c(k)$和$ c- $ robin函数$ρ_{顶点$(0,0),(b,0),(0,a)$。 Finally, we show how the definition of $δ_C(K)$ can be extended to include many nonconvex bodies $C\subset \mathbb{R}^d$ for $d-$circled sets $K\subset \mathbb{C}^d$, and we prove an integral formula for $δ_C(K)$ which we use to compute a formula for the $C-$transfinite Euclidean单位球的直径$ \ MATHBB {B} \ subset \ Mathbb {C}^2 $。

We give a general formula for the $C-$transfinite diameter $δ_C(K)$ of a compact set $K\subset \mathbb{C}^2$ which is a product of univariate compacta where $C\subset (\mathbb{R}^+)^2$ is a convex body. Along the way we prove a Rumely type formula relating $δ_C(K)$ and the $C-$Robin function $ρ_{V_{C,K}}$ of the $C-$extremal plurisubharmonic function $V_{C,K}$ for $C \subset (\mathbb{R}^+)^2$ a triangle $T_{a,b}$ with vertices $(0,0), (b,0), (0,a)$. Finally, we show how the definition of $δ_C(K)$ can be extended to include many nonconvex bodies $C\subset \mathbb{R}^d$ for $d-$circled sets $K\subset \mathbb{C}^d$, and we prove an integral formula for $δ_C(K)$ which we use to compute a formula for the $C-$transfinite diameter of the Euclidean unit ball $\mathbb{B}\subset \mathbb{C}^2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源