论文标题
使用拉普拉斯域中的时空的神经表示的认知计算
Cognitive computation using neural representations of time and space in the Laplace domain
论文作者
论文摘要
过去的内存利用了过去的函数在过去的时间里发生的记录。海马室和内嗅皮层中的时间细胞中的时间单元都随着过去时间的函数而代码,但具有截然不同的接收场。海马中的时间细胞可以理解为事件的压缩估计,这是过去的函数。内嗅皮层中的时间上下文细胞可以分别理解为该功能的拉普拉斯变换。海马和相关区域中的其他功能性细胞类型,包括边界细胞,位置细胞,轨迹编码,分离器细胞,可以理解为编码在太空或过去运动或其拉普拉斯变换的功能。更抽象的数量,例如抽象概念空间中的距离或数字,也可以映射到编码这些变量上功能的拉普拉斯变换的神经元种群中。在此框架中也可以指定记忆和证据积累的定量认知模型,从而允许行为和神经生理学的限制。更一般而言,拉普拉斯域的计算能力对于有效实施独立于数据的操作员可能很重要,这可以作为非常广泛的认知计算的神经模型的基础。
Memory for the past makes use of a record of what happened when---a function over past time. Time cells in the hippocampus and temporal context cells in the entorhinal cortex both code for events as a function of past time, but with very different receptive fields. Time cells in the hippocampus can be understood as a compressed estimate of events as a function of the past. Temporal context cells in the entorhinal cortex can be understood as the Laplace transform of that function, respectively. Other functional cell types in the hippocampus and related regions, including border cells, place cells, trajectory coding, splitter cells, can be understood as coding for functions over space or past movements or their Laplace transforms. More abstract quantities, like distance in an abstract conceptual space or numerosity could also be mapped onto populations of neurons coding for the Laplace transform of functions over those variables. Quantitative cognitive models of memory and evidence accumulation can also be specified in this framework allowing constraints from both behavior and neurophysiology. More generally, the computational power of the Laplace domain could be important for efficiently implementing data-independent operators, which could serve as a basis for neural models of a very broad range of cognitive computations.