论文标题
掩码编码单镜头实例细分
Mask Encoding for Single Shot Instance Segmentation
论文作者
论文摘要
迄今为止,实例分割由twostage方法主导,这是由蒙版R-CNN启用的。相比之下,一阶段的替代方案无法与Mask AP中的Mask R-CNN竞争,这主要是由于很难紧凑地代表面具,这使得设计一阶段方法的设计非常具有挑战性。在这项工作中,我们提出了一个简单的单身肖特实例分割框架,称为“掩码”编码基于实例分割(meinst)。我没有直接预测二维掩码,而是将其提炼成紧凑而固定的表示矢量,该矢量允许实例分割任务被整合到一个阶段的边界盒检测器中,并导致简单而有效的实例段semmentation Sexmentation semmentation semmentation框架。提出的一阶段Meinst在MS-Coco基准上使用单模型(Resnex-101-FPN主链)和单尺度测试实现了36.4%的蒙版AP。我们表明,更简单,更灵活的单阶段实例细分方法也可以实现竞争性能。该框架可以轻松适应其他实例级识别任务。代码可在以下网址找到:https://git.io/adelaidet
To date, instance segmentation is dominated by twostage methods, as pioneered by Mask R-CNN. In contrast, one-stage alternatives cannot compete with Mask R-CNN in mask AP, mainly due to the difficulty of compactly representing masks, making the design of one-stage methods very challenging. In this work, we propose a simple singleshot instance segmentation framework, termed mask encoding based instance segmentation (MEInst). Instead of predicting the two-dimensional mask directly, MEInst distills it into a compact and fixed-dimensional representation vector, which allows the instance segmentation task to be incorporated into one-stage bounding-box detectors and results in a simple yet efficient instance segmentation framework. The proposed one-stage MEInst achieves 36.4% in mask AP with single-model (ResNeXt-101-FPN backbone) and single-scale testing on the MS-COCO benchmark. We show that the much simpler and flexible one-stage instance segmentation method, can also achieve competitive performance. This framework can be easily adapted for other instance-level recognition tasks. Code is available at: https://git.io/AdelaiDet