论文标题
基于微米G的$μ$ TPC-MIMAC检测器的暗物质方向检测性能
Dark Matter Directionality Detection performance of the Micromegas-based $μ$TPC-MIMAC detector
论文作者
论文摘要
定向暗物质检测(DDMD)可以打开一个新的签名,用于弱质量相互作用的颗粒(WIMP)暗物质。定向签名提供了克服中微子和中微子背景的独特方法。为了获得定向签名,DDM检测器应对KEV范围内的低核能后坐力敏感,并且具有比$ 20^{\ Circ} $更好的角度分辨率。我们已经进行了低能($ <30 \,\ Mathrm {Kev} $)离子光束设备的实验,以测量MIMAC检测器原型中核后坐力轨道的角度分布。在本文中,我们研究了在这个低能范围内的氟核轨迹的电子漂移方向($ 0^{\ circ} $入射角),并显示由单核中性中子场实验产生的核后坐角重建。我们发现高增益系统效应导致沿电子漂移方向的高角度分辨率。测得的角度分布受扩散的影响,空间电荷或离子反馈效应可以通过在闪存ADC曲线中观察到的不对称因子来校正。 $ 0^{\ circ} $事件离子的估计角度分辨率大于$ 15^{\ circ} $,价格为$ 10 $ kev Kinetic Energy,并且同意$ 20 $%的模拟。基于修改的Garfield ++代码,将来自核后坐的分布与模拟结果进行了比较。我们的研究表明,对于光wimps的DDMD而言,质子将比较重的核更适合靶标。我们证明,从暗物质信号的银河光环起源的定向签名在实验上是可以实现的,并且对低压检测器的运行条件具有深刻的了解,并具有其扩散机制。
Directional Dark Matter Detection (DDMD) can open a new signature for Weakly Massive Interacting Particles (WIMPs) Dark Matter. The directional signature provides in addition, an unique way to overcome the neutron and neutrino backgrounds. In order to get the directional signature, the DDM detectors should be sensitive to low nuclear energy recoils in the keV range and have an angular resolution better than $20^{\circ}$. We have performed experiments with low energy ($<30\,\mathrm{keV}$) ion beam facilities to measure the angular distribution of nuclear recoil tracks in a MIMAC detector prototype. In this paper, we study angular spreads with respect to the electron drift direction ($0^{\circ}$ incident angle) of Fluorine nuclear tracks in this low energy range, and show nuclear recoil angle reconstruction produced by a monoenergetic neutron field experiment. We find that a high-gain systematic effect leads to a high angular resolution along the electron drift direction. The measured angular distribution is impacted by diffusion, and space charge or ion feedback effects, which can be corrected for by an asymmetry factor observed in the flash-ADC profile. The estimated angular resolution of the $0^{\circ}$ incident ion is better than $15^{\circ}$ at $10$ keV kinetic energy and agrees with the simulations within $20$%. The distributions from the nuclear recoils have been compared with simulated results based on a modified Garfield++ code. Our study shows that protons would be a more adapted target than heavier nuclei for DDMD of light WIMPs. We demonstrate that directional signature from the Galactic halo origin of a Dark Matter WIMP signal is experimentally achievable, with a deep understanding of the operating conditions of a low pressure detector with its diffusion mechanism.