论文标题
字符总和主要多项式产品
Character sums over products of prime polynomials
论文作者
论文摘要
我们在$ \ mathbb {f} _q [t] $中研究了多项式上的dirichlet字符的总和,并具有大量的不可约合因素。我们的主要结果是根据Dirichlet l功能的零,这些总和的明确公式。我们还表现出有关此类总和的偏见的新现象,当时不可约的因素数量很大。
We study sums of Dirichlet characters over polynomials in $\mathbb{F}_q[t]$ with a prescribed number of irreducible factors. Our main results are explicit formulae for these sums in terms of zeros of Dirichlet L-functions. We also exhibit new phenomena concerning Chebyshev-type biases of such sums when the number of irreducible factors is very large.