论文标题

用极小矩阵的在线和实时对象跟踪算法

Online and Real-time Object Tracking Algorithm with Extremely Small Matrices

论文作者

Tithi, Jesmin Jahan, Aananthakrishnan, Sriram, Petrini, Fabrizio

论文摘要

在线和实时对象跟踪是一个有趣的工作负载,可用于实时的一系列视频序列,用于跟踪对象(例如,汽车,人类,动物)。对于边缘设备上的简单对象跟踪,对象跟踪的输出可能很简单,就像在检测到的对象周围绘制一个边界框,在某些情况下,此类计算中使用的输入矩阵很小(例如4x7、3x3、5x5等)。结果,实际工作的数量很低。因此,典型的基于多线程的并行化技术无法加速跟踪应用程序。取而代之的是,基于吞吐量的平行化技术,每个线程在独立的视频序列上运行更有意义。在本文中,我们分享了同行在共享内存多项式上简单的在线和实时跟踪(排序)应用程序并行的经验。

Online and Real-time Object Tracking is an interesting workload that can be used to track objects (e.g., car, human, animal) in a series of video sequences in real-time. For simple object tracking on edge devices, the output of object tracking could be as simple as drawing a bounding box around a detected object and in some cases, the input matrices used in such computation are quite small (e.g., 4x7, 3x3, 5x5, etc). As a result, the amount of actual work is low. Therefore, a typical multi-threading based parallelization technique can not accelerate the tracking application; instead, a throughput based parallelization technique where each thread operates on independent video sequences is more rewarding. In this paper, we share our experience in parallelizing a Simple Online and Real-time Tracking (SORT) application on shared-memory multicores.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源