论文标题

边缘情报:体系结构,挑战和应用

Edge Intelligence: Architectures, Challenges, and Applications

论文作者

Xu, Dianlei, Li, Tong, Li, Yong, Su, Xiang, Tarkoma, Sasu, Jiang, Tao, Crowcroft, Jon, Hui, Pan

论文摘要

Edge Intelligence是指在基于人工智能捕获数据的位置,用于数据收集,缓存,处理和分析的一组连接的系统和设备。边缘智能的目的是提高数据处理的质量和速度并保护数据的隐私和安全性。尽管最近出现了,从2011年到现在,这一研究领域在过去五年中表明了爆炸性的增长。在本文中,我们对围绕边缘情报的文献进行了详尽而全面的调查。我们首先根据与提议和部署的系统有关的理论和实际结果,确定边缘智能的四个基本组成部分,即边缘缓存,边缘训练,边缘推理和边缘卸载。然后,我们通过检查四个组成部分的每个组件的研究结果和观察结果,并提出包括实际问题,采用技术和应用程序目标的分类法,以系统地分类解决方案的状态。对于每个类别,我们从采用技术,目标,绩效,优势和缺点等的角度详细说明,比较和分析文献。本调查文章提供了对Edge Intelligence及其应用领域的全面介绍。此外,我们总结了新兴研究领域和当前最新技术的发展,并讨论了重要的开放问题以及可能的理论和技术解决方案。

Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis in locations close to where data is captured based on artificial intelligence. The aim of edge intelligence is to enhance the quality and speed of data processing and protect the privacy and security of the data. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this paper, we present a thorough and comprehensive survey on the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, namely edge caching, edge training, edge inference, and edge offloading, based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare and analyse the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, etc. This survey article provides a comprehensive introduction to edge intelligence and its application areas. In addition, we summarise the development of the emerging research field and the current state-of-the-art and discuss the important open issues and possible theoretical and technical solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源