论文标题

$ d $二维的希尔伯特空间上的运营商相互无偏的统一基础

Mutually Unbiased Unitary Bases of Operators on $d$-dimensional Hilbert Space

论文作者

Nasir, Rinie N. M., Shaari, Jesni Shamsul, Mancini, Stefano

论文摘要

类似于希尔伯特空间的相互无偏基底座的概念,我们考虑了运算符空间的互无偏见基地(MUUB),$ m(d,\ mathbb {c})$,作用于这样的希尔伯特空间。 Muub的概念反映了一个$ m(d,\ m athbb {c})$的统一猜测,当估计另一个统一运算符时。但是,对于Prime dimension $ d $,已知Muubs的最大数量为$ d^{2} -1 $,假设它们存在,则没有已知的构造配方。但是,始终可以构建至少三个MUUB,并且最大数字的范围非常大的$ d $。 MUUBS也可以以$ M(d,\ Mathbb {C})$为$ D $二维子空间存在,最大数字为$ D $。

Analogous to the notion of mutually unbiased bases for Hilbert spaces, we consider mutually unbiased unitary bases (MUUB) for the space of operators, $M(d, \mathbb{C})$, acting on such Hilbert spaces. The notion of MUUB reflects the equiprobable guesses of unitary in one bases of $M(d, \mathbb{C})$ when estimating a unitary operator in another. Though, for prime dimension $d$, the maximal number of MUUBs is known to be $d^{2}-1$, there is no known recipe for constructing them, assuming they exist. However, one can always construct a minimum of three MUUBs, and the maximal number is approached for very large values of $d$. MUUBs can also exists for some $d$-dimensional subspace of $M(d, \mathbb{C})$ with the maximal number being $d$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源