论文标题

通过多变量分析,在100 TEV强子对撞机处测量100 TEV强子对偶联的三线性希格斯玻色子自我耦合

Measuring the trilinear Higgs boson self--coupling at the 100 TeV hadron collider via multivariate analysis

论文作者

Park, Jubin, Chang, Jung, Cheung, Kingman, Lee, Jae Sik

论文摘要

我们通过衰减通道$ hh \ to b \ barbγγ$在未来的100 TEV $ PP $ collider上对Higgs-pair生产进行多元分析,以确定在标准模型中以1为1的三线higgs higgs higgs higgs higgs higgs higgs higgs higgs higgs higgs higgs higgs。我们考虑所有已知的背景过程。对于信号,我们采用{\ tt powheg-box-v2}的最新事件生成器来利用NLO分布来用于多变量数据分析(TMVA)的工具包。通过增强决策树(BDT)分析的技术,接受了$λ_{3H} = 1 $训练的方法,与传统的切割和计数方法相比,信噪比的比例从$ 1/10 $ $ 1/10 $中的大幅提高到$ 1 $,而重要性可以达到3 ab $^ab $^{-1} $的意义可达$ 20.5 $。此外,通过实现具有优化的bin尺寸的信号plus-background $ m_ {γγbb} $分布的可能性拟合,即使在68 \%cl的精度为68 \%Cl,即使在100 tev Hadron的早期,也可以以7.5 \%的精度确定THSC。

We perform a multivariate analysis of Higgs-pair production via the decay channel $HH \to b\bar b γγ$ at the future 100 TeV $pp$ collider to determine the trilinear Higgs self--coupling (THSC) $λ_{3H}$, which takes the value of 1 in the standard model. We consider all known background processes. For the signal we adopt the most recent event generator of {\tt POWHEG-BOX-V2} to exploit the NLO distributions for Toolkit for Multivariate Data Analysis (TMVA). Through the technique of Boosted Decision Tree (BDT) analysis trained for $λ_{3H}=1$, compared to the the conventional cut-and-count approach, the signal-to-background ratio improves tremendously from about $1/10$ to $1$ and the significance can reach up to $20.5$ with a luminosity of 3 ab$^{-1}$ without including systematic uncertainties. In addition, by implementing a likelihood fitting of the signal-plus-background $M_{γγb b}$ distribution with optimized bin sizes, it is possible to determine the THSC with the precision of 7.5\% at 68\% CL even at the early stage of 100 TeV hadron collider with 3 ab$^{-1}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源