论文标题
对数课程的循环歼灭者
Circular annihilators of logarithmic classes
论文作者
论文摘要
给定一个带有G组和一个奇数质数{\ ell}的真正的Abelian Field F,我们定义了对数单元的pro-{\ ell} - 群的圆形亚组,我们向logarithmic Units to z {g]的任何Galois形态$ρ$组成的任何Galois形态$ρ$ cancomplup。消灭对数类的{\ ell} - 群。我们从此来描述了所罗门猜想的对数版本的证明。
Given a real abelian field F with group G and an odd prime number {\ell}, we define the circular subgroup of the pro-{\ell}-group of logarithmic units and we show that for any Galois morphism $ρ$ from the pro-{\ell}-group of logarithmic units to Z{\ell} [G ], the image of the circular subgroup annihilates the {\ell}-group of logarithmic classes. We deduce from this a proof of a logarithmic version of Solomon conjecture.