论文标题

临床部署的基因组分类器的优化:评估贝叶斯优化以选择急性感染和院内死亡率的预测模型

Optimization of Genomic Classifiers for Clinical Deployment: Evaluation of Bayesian Optimization to Select Predictive Models of Acute Infection and In-Hospital Mortality

论文作者

Mayhew, Michael B., Tran, Elizabeth, Choi, Kirindi, Midic, Uros, Luethy, Roland, Damaraju, Nandita, Buturovic, Ljubomir

论文摘要

急性感染(即使未迅速,准确地检测到)可能导致败血症,器官衰竭甚至死亡。当前对急性感染的检测以及对患者疾病严重程度的评估是不完美的。通过量化血液中特定基因的表达水平来表征患者的免疫反应,这可能是完成这两项任务的一种可能更及时,更精确的手段。机器学习方法提供了一个平台,以利用此“主机响应”来开发部署就绪的分类模型。有希望的分类器的优先次序部分取决于超参数优化,其中包括网格搜索,随机抽样和贝叶斯优化在内的多种方法已被证明是有效的。我们比较了HO方法,用于开发急性感染的诊断分类器和来自29个诊断标记基因表达的院内死亡率。我们采用以部署为中心的方法进行全面分析,考虑到我们的多学生患者队列中的异质性,并选择了我们的数据集分区和超参数优化目标以及评估外部(以及内部)验证中选定的分类器。我们发现,贝叶斯优化为院内死亡率选择的分类器可以优于通过网格搜索或随机抽样选择的分类器。但是,与先前的研究相反:1)与网格搜索或基于网格搜索或基于随机抽样的方法相比,在所有情况下选择分类器的贝叶斯优化效率不高,并且2)我们在使用贝叶斯优化的常见变体(即自动相关性确定)时只有在特定情况下只有特定情况下分类器性能的边际增益。我们的分析强调了在医疗保健背景下对HO方法进行进一步实用,以部署为中心的基准的必要性。

Acute infection, if not rapidly and accurately detected, can lead to sepsis, organ failure and even death. Current detection of acute infection as well as assessment of a patient's severity of illness are imperfect. Characterization of a patient's immune response by quantifying expression levels of specific genes from blood represents a potentially more timely and precise means of accomplishing both tasks. Machine learning methods provide a platform to leverage this 'host response' for development of deployment-ready classification models. Prioritization of promising classifiers is dependent, in part, on hyperparameter optimization for which a number of approaches including grid search, random sampling and Bayesian optimization have been shown to be effective. We compare HO approaches for the development of diagnostic classifiers of acute infection and in-hospital mortality from gene expression of 29 diagnostic markers. We take a deployment-centered approach to our comprehensive analysis, accounting for heterogeneity in our multi-study patient cohort with our choices of dataset partitioning and hyperparameter optimization objective as well as assessing selected classifiers in external (as well as internal) validation. We find that classifiers selected by Bayesian optimization for in-hospital mortality can outperform those selected by grid search or random sampling. However, in contrast to previous research: 1) Bayesian optimization is not more efficient in selecting classifiers in all instances compared to grid search or random sampling-based methods and 2) we note marginal gains in classifier performance in only specific circumstances when using a common variant of Bayesian optimization (i.e. automatic relevance determination). Our analysis highlights the need for further practical, deployment-centered benchmarking of HO approaches in the healthcare context.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源