论文标题

与双曲线有关的全体形态功能家族的系数问题

Coefficients problems for families of holomorphic functions related to hyperbola

论文作者

Kanas, S., Masih, V. S., Ebadian, A.

论文摘要

我们考虑一个与域$ \ mathbb {h}(s)$相关的分析和归一化功能的家族,其中双曲线$ h(s)$作为边界。双曲线$ h(s)$由关系$ \ frac {1}ρ= \ left(2 \ cos \fracφ{s} \ right)^s \ quad(0 <s \ le 1,\ |φ|φ| <(πs)/2 $)。我们主要研究$ zf'/f $或$ 1+zf''/f'$的功能系列的系数问题,将单位磁盘映射到$ \ mathbb {h}(s)$的子集中。我们发现系数范围,解决了Fekete-Szegö问题并估算了Hankel的决定因素。

We consider a family of analytic and normalized functions that are related to the domains $\mathbb{H}(s)$, with a right branch of a hyperbolas $H(s)$ as a boundary. The hyperbola $H(s)$ is given by the relation $\frac{1}ρ=\left( 2\cos\fracφ{s}\right)^s\quad (0<s\le 1,\ |φ|<(πs)/2$). We mainly study a coefficient problem of the families of functions for which $zf'/f$ or $1+zf''/f'$ map the unit disk onto a subset of $\mathbb{H}(s)$. We find coefficients bounds, solve Fekete-Szegö problem and estimate the Hankel determinant.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源