论文标题

通过图诱导的原型比对跨域检测

Cross-domain Detection via Graph-induced Prototype Alignment

论文作者

Xu, Minghao, Wang, Hang, Ni, Bingbing, Tian, Qi, Zhang, Wenjun

论文摘要

直接将在特定域上训练的对象检测器的知识直接应用到新域是有风险的,因为两个域之间的差距会严重降低模型的性能。此外,由于不同实例在对象检测方案中通常体现了不同的模态信息,因此很难实现源和目标域的特征比对。为了减轻这些问题,我们提出了图形诱导的原型比对(GPA)框架,以通过精心设计的原型表示寻求类别级别的域对齐。简而言之,通过区域建议之间的基于图的信息传播获得了更精确的实例级特征,并且在此基础上,每个类的原型表示是针对类别级别的域对齐的。此外,为了减轻班级不平衡对域适应的负面影响,我们设计了一个融合的对比损失,以协调适应性训练过程。与更快的R-CNN相结合,提出的框架以两阶段的方式进行特征对齐。各种跨域检测任务的全面结果表明,我们的方法以显着的余量优于现有方法。我们的代码可在https://github.com/chrisallenming/gpa-detection上找到。

Applying the knowledge of an object detector trained on a specific domain directly onto a new domain is risky, as the gap between two domains can severely degrade model's performance. Furthermore, since different instances commonly embody distinct modal information in object detection scenario, the feature alignment of source and target domain is hard to be realized. To mitigate these problems, we propose a Graph-induced Prototype Alignment (GPA) framework to seek for category-level domain alignment via elaborate prototype representations. In the nutshell, more precise instance-level features are obtained through graph-based information propagation among region proposals, and, on such basis, the prototype representation of each class is derived for category-level domain alignment. In addition, in order to alleviate the negative effect of class-imbalance on domain adaptation, we design a Class-reweighted Contrastive Loss to harmonize the adaptation training process. Combining with Faster R-CNN, the proposed framework conducts feature alignment in a two-stage manner. Comprehensive results on various cross-domain detection tasks demonstrate that our approach outperforms existing methods with a remarkable margin. Our code is available at https://github.com/ChrisAllenMing/GPA-detection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源