论文标题

边界反馈稳定与部分耗散结构的准双曲系统

Boundary feedback stabilization of quasilinear hyperbolic systems with partially dissipative structure

论文作者

Wang, Ke, Wang, Zhiqiang, Yao, Wancong

论文摘要

在本文中,我们研究了具有部分耗散结构的准双线双曲线系统的边界反馈稳定。借助此结构,我们构建了合适的Lyapunov功能,该功能可导致$ H^2 $解决方案的平衡指数稳定性。作为应用程序,我们还获得了物理边界条件下的圣维特 - 外观模型的反馈稳定。

In this paper, we study the boundary feedback stabilization of a quasilinear hyperbolic system with partially dissipative structure. Thanks to this structure, we construct a suitable Lyapunov function which leads to the exponential stability to the equilibrium of the $H^2$ solution. As an application, we also obtain the feedback stabilization for the Saint-Venant-Exner model under physical boundary conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源