论文标题
无监督的模型个性化,同时保留隐私和可扩展性:一个开放的问题
Unsupervised Model Personalization while Preserving Privacy and Scalability: An Open Problem
论文作者
论文摘要
这项工作调查了无监督模型个性化的任务,该任务适用于不断发展,未标记的本地用户图像。我们考虑了高容量服务器与无数资源有限的边缘设备相互作用的实用方案,对可扩展性和本地数据隐私施加了强烈要求。我们的目标是在持续学习范式中应对这一挑战,并提供一种新颖的双用户适应框架(DUA)来探索问题。该框架可以灵活地将用户适应为服务器上的模型个性化和用户设备上的本地数据正则化,并具有有关可伸缩性和隐私约束的理想属性。首先,在服务器上,我们引入了特定于任务专家模型的增量学习,随后使用隐藏的无监督用户之前汇总。聚合避免了重新培训,而用户事先掩盖了敏感的原始用户数据,并授予无监督的适应性。其次,本地用户 - 适用于域的适应观点,将正规化批准参数调整为用户数据。我们探索各种经验用户配置,具有类别中不同的先验和MIT室内场景识别的十倍转换,并将数字分类为组合的MNIST和SVHN设置。广泛的实验为数据驱动的本地适应带来了有希望的结果,并引起用户先验的服务器适应性取决于模型而不是用户数据。因此,尽管用户适应仍然是一个具有挑战性的开放问题,但DUA框架为在服务器和用户设备上个性化的原则性基础形式化,同时保持隐私和可扩展性。
This work investigates the task of unsupervised model personalization, adapted to continually evolving, unlabeled local user images. We consider the practical scenario where a high capacity server interacts with a myriad of resource-limited edge devices, imposing strong requirements on scalability and local data privacy. We aim to address this challenge within the continual learning paradigm and provide a novel Dual User-Adaptation framework (DUA) to explore the problem. This framework flexibly disentangles user-adaptation into model personalization on the server and local data regularization on the user device, with desirable properties regarding scalability and privacy constraints. First, on the server, we introduce incremental learning of task-specific expert models, subsequently aggregated using a concealed unsupervised user prior. Aggregation avoids retraining, whereas the user prior conceals sensitive raw user data, and grants unsupervised adaptation. Second, local user-adaptation incorporates a domain adaptation point of view, adapting regularizing batch normalization parameters to the user data. We explore various empirical user configurations with different priors in categories and a tenfold of transforms for MIT Indoor Scene recognition, and classify numbers in a combined MNIST and SVHN setup. Extensive experiments yield promising results for data-driven local adaptation and elicit user priors for server adaptation to depend on the model rather than user data. Hence, although user-adaptation remains a challenging open problem, the DUA framework formalizes a principled foundation for personalizing both on server and user device, while maintaining privacy and scalability.