论文标题

机器学习弦标准模型

Machine Learning String Standard Models

论文作者

Deen, Rehan, He, Yang-Hui, Lee, Seung-Joo, Lukas, Andre

论文摘要

我们研究了弦线束模型的背景下出现的字符串压缩的现象学相关特性的机器学习。都考虑了监督和无监督的学习。我们发现,对于固定的紧凑型歧管,相对较小的神经网络能够与没有这些特性的随机模型区分一致的线条模型和正确的手性不对称性。使用自动编码器,在无监督学习的背景下也可以实现相同的区别。学习非题材属性,特别是希格斯的数量多数,这是更困难的,但是使用较大的网络和功能增强的数据集可以使用。

We study machine learning of phenomenologically relevant properties of string compactifications, which arise in the context of heterotic line bundle models. Both supervised and unsupervised learning are considered. We find that, for a fixed compactification manifold, relatively small neural networks are capable of distinguishing consistent line bundle models with the correct gauge group and the correct chiral asymmetry from random models without these properties. The same distinction can also be achieved in the context of unsupervised learning, using an auto-encoder. Learning non-topological properties, specifically the number of Higgs multiplets, turns out to be more difficult, but is possible using sizeable networks and feature-enhanced data sets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源