论文标题

图形霍克斯神经网络用于预测时间知识图

Graph Hawkes Neural Network for Forecasting on Temporal Knowledge Graphs

论文作者

Han, Zhen, Ma, Yunpu, Wang, Yuyi, Günnemann, Stephan, Tresp, Volker

论文摘要

霍克斯过程已成为建模具有不同事件类型的自兴趣事件序列的标准方法。最近的一项工作将霍克斯的过程概括为神经自我调节的多元点过程,这使过去事件对未来事件的更复杂和现实的影响更加复杂。但是,这种方法受到可能的事件类型的数量的限制,使得不可能建模不断发展的图形序列的动力学,其中两个节点之间的每个可能链接都可以视为事件类型。当链接是定向和标记时,事件类型的数量甚至进一步增加。为了解决这个问题,我们提出了图形鹰神经网络,该网络可以捕获不断发展的图形序列的动力学,并可以预测未来时间实例中事实的发生。大规模的时间多性数据库(例如时间知识图)进行了广泛的实验,证明了我们方法的有效性。

The Hawkes process has become a standard method for modeling self-exciting event sequences with different event types. A recent work has generalized the Hawkes process to a neurally self-modulating multivariate point process, which enables the capturing of more complex and realistic impacts of past events on future events. However, this approach is limited by the number of possible event types, making it impossible to model the dynamics of evolving graph sequences, where each possible link between two nodes can be considered as an event type. The number of event types increases even further when links are directional and labeled. To address this issue, we propose the Graph Hawkes Neural Network that can capture the dynamics of evolving graph sequences and can predict the occurrence of a fact in a future time instance. Extensive experiments on large-scale temporal multi-relational databases, such as temporal knowledge graphs, demonstrate the effectiveness of our approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源